

Initial definition of protocols and APIs

Project acronym: CS3MESH4EOSC

Deliverable D3.1: Initial Definition of Protocols and APIs

Contractual delivery date 30-09-2020
Actual delivery date 16-10-2020
Grant Agreement no. 863353
Work Package WP3
Nature of Deliverable R (Report)
Dissemination Level PU (Public)
Lead Partner CERN
Document ID CS3MESH4EOSC-20-006

Authors

Hugo Gonzalez Labrador (CERN), Guido Aben (AARNET), David Antos
(CESNET), Maciej Brzezniak (PSNC), Daniel Muller (WWU), Jakub
Moscicki (CERN), Alessandro Petraro (CUBBIT), Antoon Prins
(SURFSARA), Marcin Sieprawski (AILLERON), Ron Trompert
(SURFSARA)

 Disclaimer:

The document reflects only the authors’ view and the European Commission is not responsible for
any use that may be made of the information it contains.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 863353

This document is licensed under a Creative Commons Attribution 4.0 International (CC BY-4.0) License, with
the exception of the EU, EOSC, CS3MESH4EOSC and CS3 logos, as well as any other resources marked as such.

Table of Contents
1 Introduction ... 3

2 Core APIS .. 3

2.1 Open Cloud Mesh (OCM) .. 3
2.1.1 Introduction .. 3
2.1.2 Advancing OCM ... 4
2.1.3 Extensions .. 5

2.2 CS3APIs ... 7

2.3 WebDAV ... 8

2.4 WOPI ... 9

3 Use-Cases .. 9

3.1 Data Science Environments .. 10
3.2.1 Jupyter extensions .. 11

3.2 Open Data Systems ... 13

3.3 Collaborative Documents .. 15

3.4 On-demand data transfers .. 16
3.4.1 RClone based transfers .. 17

4 EFSS integration with IOP .. 18

5 Peer-to-Peer architecture integration with IOP: Cubbit 20

6 ScienceMesh Infrastructure APIs: Monitoring .. 21

6.1 Mentix .. 22

7 Conclusion .. 23

8 Table of figures .. 24

Deliverable D3.1

CS3MESH4EOSC-20-006

3

1 Introduction
This document describes the development and definition of a set of vendor-neutral protocols and

APIs necessary to build the full Science Mesh service, including federated sharing of data, access to
application functionality and infrastructure integration. Our approach is based on:

1. maturing and extending protocols already in use by CS3 community (e.g. OCM, CS3APIs)
with the aim to advance these protocols from TRL6 to TRL9;

2. adopting other existing standard protocols wherever appropriate (e.g. WOPI, WebDAV,
...).

This document is divided in several sections.

Core APIs identifies the core APIs and protocols for the Science Mesh service: OCM and CS3APIs.

Use Cases further explores the usage of these interfaces in the four reference application
workflows developed in the context of Work Package 4: Data Science Environments, Open Data
Systems, Collaborative Document Editing and On-Demand Data Transfers.

EFSS integration with IOP section describes the architecture connecting EFSS with the
Interoperability Platform (IOP). IOP provides the reference implementation for the Core and Use-
Case APIs.

Integration of Peer-to-Peer architecture with IOP is described based on the Cubbit
implementation.

ScienceMesh Infrastructure APIs are presented for monitoring endpoints.

2 Core APIS
This section describes the core APIs, protocols and their purpose and role in the Science Mesh

service. As a design principle, industry standards for the transport protocol layer (for example, HTTP
and gRPC) are used to interconnect server-side components and to achieve maximal interoperability.
The choice of the transport protocol is based on the following criteria: quality of implementation;
wide adoption in the industry and in open-source projects, support for multiple programming
languages (to increase integration with all systems based on different technologies) and enterprise-
grade tooling (debuggers, testing frameworks).

2.1 Open Cloud Mesh (OCM)

2.1.1 Introduction

Open Cloud Mesh (OCM) was started in 2015 as a joint international initiative, under the umbrella
of the GÉANT Association, to develop a web-based protocol for universal file access beyond individual
clouds which would enable a creation of a globally interconnected mesh of research clouds without
sacrificing any of the advantages in privacy, control and security an on-premises cloud provides. OCM
defines a vendor-neutral, common file access layer across an organization and/or across globally

Deliverable D3.1

CS3MESH4EOSC-20-006

4

interconnected organizations, regardless of the user data locations and choice of clouds.

The first phase of the OCM development ended with the initial version OCM v.0.0.3 which was
published in an open repository1 and presented at the CS3 2017 Workshop in Amsterdam
(cs3community.org). Further OCM stakeholder discussions had been held at the yearly CS3
Workshops in 2018, 2019 and 2020

Following the initial API specification, the software companies ownCloud, Nextcloud and Seafile
developed initial implementations. However, no further interoperability tests have been conducted
between these different platforms. Consequently, the potential of OCM has not yet been fully realized
in spite of sustained interest among the CS3 workshop participants, and beyond, in the wider
Education and Research Community.

2.1.2 Advancing OCM

As a follow up of the discussions held at the CS3 2020 Workshop in Copenhagen, the OCM
Workshop was organized in June 2020 (project M6) in the context of WP3 activities to develop and
promote neutral APIs.

Figure 1. Agenda of the first OCM Workshop (https://indico.cern.ch/event/928998)

The workshop was attended by 68 participants from the traditional CS3 community: educational
and research institutions, NRENs, contributors to web standards and projects such as SOLID2, and the

1 https://github.com/GEANT/OCM-API
2 https://en.wikipedia.org/wiki/Solid_(web_decentralization_project

Deliverable D3.1

CS3MESH4EOSC-20-006

5

principal EFSS vendors (Owncloud, Nextcloud, Seafile). The main discussion points:

• Transfer of the OCM API repository to the community-based CS3 Organization on Github3
to provide a stronger drive for the evolution and adoption of the OCM protocol;

• Review of the existing proposals for changes and agreement on the schedule to tag and
release OCM v1.0.0

• Summary of plans of EFSS vendors on further OCM support and development

• Presentation of ScienceMesh as a user of OCM

• Discussion on web standardisation, protocols and vendor-independent testing.

The workshop resulted in the following practical actions:

• Review of the most prominent Pull Requests to version 0.0.3 in the Github repository4
(June 2020);

• merge of Pull Request #375 in agreement with all EFSS vendors (July 2020);

• release of version 1.0.0 of the OCM API6 (September 2020).

OCM v1.0.0 API has been exported to a persistent repository: DOI 10.5281/zenodo.40453607.

In addition, the workshop participants agreed to organize regular meetings to track evolution of
OCM as well as starting of the “OCM user” forum organized by the former OCM coordinator at GÉANT.

2.1.3 Extensions

The existing OCM protocol allows to initiate a “rendezvous” between two systems to exchange
data. The most common use-case is to allow access to a given dataset at a source system (“provider”)
to a target system (“consumer”), a mechanism which is usually known as "sharing". The existing
specification has been crafted with the following assumption in mind: “the provider knows the consumer
(both endpoint and user) when it creates a share with the consumer. How this is known is not part of this spec.”

While this “omission” can be seen as a way to keep the protocol simple by focusing on its core
functionality, it deprives OCM of what could otherwise be a powerful vendor-agnostic user discovery
mechanism. And such a mechanism would be a key enabler of a large-scale cross-vendor distributed
system such as ScienceMesh. The mechanism envisioned to share and exchange data in Science Mesh
must be:

• Simple and easy to use by end-users as if they were sharing data with users in the same
platform

3 https://github.com/cs3org/ocm-api
4 https://github.com/cs3org/ocm-api
5 https://github.com/cs3org/OCM-API/pull/37
6 https://github.com/cs3org/OCM-API/releases/tag/v1.0.0
7 https://zenodo.org/record/4045360#.X2r92ZMza-Y

Deliverable D3.1

CS3MESH4EOSC-20-006

6

• Respectful of the privacy of the user

A survey was conducted amongst the project partners to understand the readiness of their
infrastructures to connect to EduGain. The results were collected from 9 infrastructures, out of which
7 operate ownCloud, one Seafile and one a proprietary solution. A single site is directly connected to
eduGAIN, 6 use their national academic identity federations, one none of those. Out of the federated
ones, two accept all identities from the federation, while others perform various levels of attribute
filtering, ranging from simple organisation affiliation to quite complex rules based on combination
of attributes for various organisation types, depending on eligibility of users to consume
infrastructure services.

The results of the survey highlighted even more the need to have a de-centralized approach to
user discovery at this phase of the project to enrol existing sites while they prepare for adopting
EduGain.

The Invitation Workflow has been developed by the CS3MESH4EOSC project to meet these
requirements as a vendor-neutral extension of the OCM.

2.1.3.1 OCM	Invitation	Workflow	

Current Open Cloud Mesh API implements sharing that requires the user to know an exact identity
of the party in the remote system. While such API functionality is necessary to implement practical
scenarios, from a user experience point of view, such knowledge cannot be reasonably expected. The
invitation to sharing can be sent via a separate communication channel; and e-mail address is
probably the most common identification the users will know and commonly use. We have designed
a scenario based on this observation.

Figure 2. Invitation-Work flow (OCM)

1. The first step is to generate a unique token to be used to authorise the remote system to
accept the invitation. The generation of the token is outside the scope of this extension.

2. The token and the domain of the source system are transmitted to the remote system. The
mechanism to send this information is outside the scope of the API, implementers have a
vast range of alternatives to achieve it (email, QR code, …).

Deliverable D3.1

CS3MESH4EOSC-20-006

7

Figure 3. CS3APIs documentation (sample).

3. The information (token and sender domain) arrives to the target system. The target
system obtains the user identity of the logged in user and send it back to the source with
the domain of the target system. The source system knows now the identity at the target
system to initiate an OCM share.

The extension is proposed for inclusion into OCM in the following Pull Request 418.

Two new endpoints are introduced:

• /ocm /invites/forward (POST): this endpoint is available on the target system and is
used to forward an invitation received through an out-of-band channel (like email).

• /ocm /invites/accept (POST): this endpoint is available on the source system and is used
to accept the invitation to trigger the default OCM workflow and establish the rendezvous

2.2 CS3APIs
The Cloud Sync and Share Services APIs (CS3APIs) provide an interoperable connection among

sync and share platforms, storage providers and application providers; decreasing the burden of
porting applications developed for different EFSS platforms. This also allows connect the EFSS for
existing or new storage repositories over a well-defined metadata control plane. For site
administrators of sync and share services, CS3APIs allow to reuse existing connectors to other
research services (such as digital repositories) independently of the technology stack. Finally,
interoperability decreases the risk of vendor lock-in and ease migration to other CS3APIs-compatible
software stacks.

The official documentation of the APIs is available online: https://cs3org.github.io/cs3apis/.

8 https://github.com/cs3org/OCM-API/pull/41

Deliverable D3.1

CS3MESH4EOSC-20-006

8

The CS3APIs are split into modules that can be implemented independently depending on the
desired level of integration.

• Gateway API: it provides a façade API to clients, abstracting them from complex
interactions amongst the rest of the APIs.

• Preferences API: providers endpoints for storing user preferences (for example, default
text editor, theme, ...).

• AppProvider API: provides endpoints to expose third-party applications to be integrated
into EFSS UIs (for example, Collabora).

• AppRegistry API: provides endpoints to discover applications for different mime types
and file extensions.

• AuthProvider API: provides endpoints to authenticate users based on different strategies
(basic auth, OIDC, service accounts, ...).

• AuthRegistry API: provides endpoints to discover authentication providers.

• IdentityUser API: provides endpoints to obtain user information.

• SharingCollaboration API: provides endpoints for sharing with user and group of the
system.

• SharingLink API: provides endpoints to create public links.

• SharingOCM API: provides endpoints to create OCM shares.

• StorageProvider API: provides endpoints to manipulate an underlying storage system.

• StorageRegistry API: provides endpoints to discover available storage providers.

• OCMCore API: provides endpoints to accept OCM shares.

• OCMInvite API: provides endpoints to create OCM invites.

• OCMProvider API: provides endpoints to verify OCM sources.

2.3 WebDAV
WebDAV (Web Distributed Authoring and Versioning) is an extension of the Hypertext Transfer

Protocol (HTTP) that allows clients to perform remote Web content authoring operations. WebDAV
is defined in RFC 4918 by a working group of the Internet Engineering Task Force.

The WebDAV protocol provides a framework for users to create, change and move documents on
a server. The most important features of the WebDAV protocol include the maintenance of properties
about an author or modification date, namespace management, collections, and overwrite
protection. Maintenance of properties includes such entities as the creation, removal, and querying
of file information. Namespace management deals with the ability to copy and move resources within
a server's namespace. Collections deal with the creation, removal, and listing of various resources.
Lastly, overwrite protection handles aspects related to locking of files.

Deliverable D3.1

CS3MESH4EOSC-20-006

9

WebDAV is extensively used already in many EFSS vendors (ownCloud9, nextCloud10, SeaFile11,
Pydio12) to manipulate the namespace and to download an upload of files. ownCloud and nextCloud
go a step further to rely on WebDAV semantics for their respective desktop and mobile
synchronization applications. Based on the existing built-in support by vendors and de-facto transfer
protocol promoted in OCM, ScienceMesh will leverage on it.

2.4 WOPI
The Web Application Open Platform Interface (WOPI) protocol defines APIs used to access and

change documents stored on a storage system, with emphasis on collaborative workflows.
Applications utilize this functionality by accessing various endpoints offered by a WOPI server
adhering to the WOPI protocol specifications. This allows them to work with files in a storage system-
agnostic way.

The IOP developed for the CS3MESH4EOSC project includes such a WOPI server that implements
the WOPI protocol and uses a CS3APIs compliant storage system as its file backend. This means that
this WOPI server serves as a bridge between any WOPI client and any underlying CS3APIs provider
(e.g. Reva). Instead of having to work with the CS3APIs directly, a WOPI client can rely on the WOPI
server to deal with stored documents, shared locks, and so on.

A number of web applications for collaborative editing already support the WOPI protocol and
can act as a WOPI client. These applications can be integrated by simply having them use our built-
in WOPI server. This also means that no changes need to be made to the editing software. One such
example is Collabora CODE, which enables collaborative editing of OpenOffice documents and has
already been deployed in the CS3MESH4EOSC project.

3 Use-Cases
In this section we present initial specification of APIs and application workflows for the

CS3MESH4EOSC project. The application components interact with local EFSS service via the IOP
(Interoperability Platform) using the CS3APIs.

9 https://doc.owncloud.com/server/10.5/
10 https://docs.nextcloud.com/server/15/user_manual/files/access_webdav.html
11 https://download.seafile.com/published/seafile-manual/home.md
12 https://pydio.com/en/docs/v8/setup-webdav-server-access

Deliverable D3.1

CS3MESH4EOSC-20-006

10

Figure 4. IOP and EFSS Integration Architecture

3.1 Data Science Environments
The concept of distributed Data Science Environments is to facilitate collaborative research and

enable sharing of computational tools, algorithms, and resources across the ScienceMesh. This is to
allow users to access remote execution environments to replay (and modify) analysis algorithms
without the need to set-up accounts upfront in the remote services. Interconnection of a web-based
Jupyter environments with the web-based EFSS environment is ideally suited for this task.

The integration is between Jupyter and EFSS services is achieved by a JupyterLab extension which
uses CS3APIs to communicate with local EFSS and, indirectly, via OCM, with remote
sites/environments. In this way access to federated resources is provided directly from the Jupyter
service, thus enabling researchers to perform data science tasks in a federated cloud. This allows a
user to move back-and-forth between a local file system and a federated Science Mesh within one
cohesive platform shared by users and with easy access to the science tools.

From a user perspective installation and configuration of stand-alone applications will no longer
be needed. Instead a simple browser will suffice to access the complete science environment.

Technical description can be found below.

Deliverable D3.1

CS3MESH4EOSC-20-006

11

3.2.1 Jupyter extensions

Cs3api4Lab is a JupyterLab extension that allows the integration with the IOP platform via the
CS3APIs for basic file operations (retrieval, save) as well as for sharing functionalities.

Figure 5. Prototype of the extension running inside JupyterLab

The plugin consists of two parts:

• backend – written in python, it is used for connecting Jupyter to the IOP platform. It
replaces the original Jupyter ContentsManager and Checkpoints components and it adds
a new Rest API for additional functionalities (i.e sharing). The backend establishes
connections using the gRPC protocol and uses the methods provided by the CS3APIs.

• frontend – written in TypeScript, React, HTML and CSS, it replaces the default JupyterLab
file manager and adds new interface elements for additional share functionalities. This
includes extending the file manager by adding a shared by/with tab, adding sharing
buttons and entries in the context menus and adding new modal windows to display file
information and sharing status.

Deliverable D3.1

CS3MESH4EOSC-20-006

12

Figure 6. An example of reading a directory from an IOP using the JupyterLab extension

The back-end provides the following REST endpoints for integration with the front-end:

API for content operations:

• /api/contents/{path} (GET) – This endpoint returns a model for a file, notebook or
directory.
The directory model contains a list of models, the notebook model contains a notebook
data in JSON format, the file model contains file data in a text or base64 format. This
endpoint uses the CS3API methods: Authenticate, ListContainer, InitiateFileDownload.

• /api/contents/{path} (PUT) – Saves a file or a notebook in the specified file path. For the
notebook model, the content key is saved in a JSON format. For the file format, the key
context is kept unchanged. If the JSON body contains
"{"copy_from":"[path/to/]OtherNotebook.ipynb" } ", the file copy operation is
performed. This endpoint uses the CS3API methods: Authenticate, ListContainer,
CreateContainer, InitiateFileUpload, InitiateFileDownload

• /api/contents/{path} (PATCH) - Renames a file, a notebook or a directory without re-
uploading content. This endpoint uses the CS3APImethods: Authenticate, ListContainer,
Move

• /api/contents/{path} (POST) - Creates a new file, notebook or directory in the specified
path. Server always decides on the file or directory name. This endpoint uses the CS3API
methods: Authenticate, ListContainer, CreateContainer, InitiateFileUpload,
InitiateFileDownload

• /api/contents/{path} (DELETE) - Deletes a file or directory in the given path. This
endpoint uses the CS3API methods: Authenticate, Delete

API for checkpoints operations:

• /api/contents/{path}/checkpoints (GET) - Lists checkpoints for a file.

• /api/contents/{path}/checkpoints (POST) - Creates a new checkpoint for a file.

• /api/contents/{path}/checkpoints/{checkpoint_id} (POST) - Restores a file from a

Deliverable D3.1

CS3MESH4EOSC-20-006

13

checkpoint.

• /api/contents/{path}/checkpoints/{checkpoint_id} (DELETE) – Deletes a checkpoint for a
given file.

API for share operations:

• /api/cs3/shares (POST) - Creates a share. This endpoint uses the CS3API methods:
Authenticate, CreateShare.

• /api/cs3/shares (DELETE) - Deletes a share. This endpoint uses the CS3API methods:
Authenticate, RemoveShare.

• /api/cs3/shares (PUT) - Updates a share. This endpoint uses the CS3APImethods:
Authenticate, UpdateShare

• /api/cs3/shares/list (GET) - Gets all given shares. This endpoint uses the CS3API
methods: Authenticate, ListShares

• /api/cs3/shares/received (GET) - Gets all received shares. This endpoint uses the CS3API
methods: Authenticate, ListReceivedShares.

• /api/cs3/shares/received (PUT) – Updates received share. This endpoint uses the
CS3API methods: Authenticate, UpdateReceivedShare

• /api/cs3/shares/file (GET) - Returns grantees for file. This endpoint uses the CS3API
methods: Authenticate, ListShares

3.2 Open Data Systems
Open Data Systems help the ScienceMesh users to handle structured data and use it for activities

typically associated with such data (archive, deposit and publish). The following interactions should
be possible:

1. Users should be able to create structured datasets out of unstructured data present inside
Science Mesh or about to be ingested into Science Mesh – that is, delimit what data and in
what ordered format (typically directory trees) is included in the dataset about to be
defined. The project will leverage on the RO-Crate specification its structured data format.

2. Users should be able to manipulate the metadata. For this purpose, the Describo 13 tool
provided by UTS will be a starting point, closely collaborating with the authors to explore
its capabilities and integration.

3. Users should be able to augment the structured dataset with appropriate metadata, either
user generated or harvested from environment data. Here, too, Describo acts as the design
pattern.

4. Users should be able to perform scientific workflow actions (publish, archive, etc) based

13 https://eresearch.uts.edu.au/tools/describo/

Deliverable D3.1

CS3MESH4EOSC-20-006

14

on RO-Crates14, either those already present in the system or RO-Crates that must be
generated on demand, to fulfil the task. ScieboRDS 15 is our design example here, and
WP4.2 will work closely with the ScieboRDS team to maximise synergies. Some of these
workflows will start inside the ScieboRDS application environment (e.g., “a scientist wants
to publish a paper with a certain dataset attached”), hand over to the Describo
environment (“select the relevant data to be crated up”) and then hand back to ScieboRDS
(“here’s the crated and metadata-augmented data the scientist wanted to publish”).

In light of these functionalities, the following technical considerations apply:

In the general situation, users use the web version of Describo tool as a plugin to describe files or
data with metadata, in line with the following workflow:

1. Select a directory in the cloud system (ownClud, nextCloud, etc).

2. ScieboRDS runs the Describo plugin and gives a path to the directory, authorization token,
a profile information.

3. Describo plugin opens an internal editor, check if the RO-Crate file exits, opens an existing
file.

4. The user specifies the data by filling in the default form fields (based on the profile) and
adding additional fields to the form based on the RO-Crate specification.

5. Describo plugin creates or updates the RO-Crate file with users metadata and stores it in
the IOP platform.

6. ScieboRDS open the RO-Crate file stored by Describo plugin and sends it to the external
metadata systems (e.g. Zenodoo, etc).

In this workflow, Describo plugin uses the Cs3 API methods:

• ListContainer - gets the directory structure

• InitiateFileUpload - reads the RO-Crate file and other files

• InitiateFileDownload - write the RO-Crate

• Stat - check file status for the file is exits operation

and other methods for basic file operations, revalidate authentication token, etc

The diagram below shows the general Describo plugin structure and planned components. The
web version of Describo has two general parts:

• Frontend - run on the user web browser, visualizing user interface, get input from the
user, crate RO-Crate file, preview created crate file, profile selection/customization

• Backend - run on the server, connecting to the IOP and ScieboRDS platform, convert data

14 https://eresearch.uts.edu.au/tools/describo/
15 https://www.research-data-services.org/de/

Deliverable D3.1

CS3MESH4EOSC-20-006

15

from an external system and send to the frontend part

Figure 7. The general diagram of Describo plugin components

3.3 Collaborative Documents
Collaboratively editing a document, usually from within a web browser, requires the application

to be able to synchronize the document data to and from the underlying storage. This means that the
application needs to be able to read and write the document no matter whether it resides on the
user’s sync and share system or if it has only been shared with him by another user.

While such an application can achieve this by directly using the CS3APIs, another simpler
approach is based on the WOPI protocol (cf. 2.4) as it natively supports high-level endpoints to
manage file locking and document collaboration.

A typical workflow to open a document in a WOPI-enabled application is as follows:

Deliverable D3.1

CS3MESH4EOSC-20-006

16

Figure 8. Work-flow to open a document with WOPI

API for open:

• openFileInAppProvider (GET) - Given a file reference (either in a local storage or in a
remote share), generate an application URL to open it. A view mode parameter specifies
whether the file is to be opened in view-only mode, read-only (download allowed) mode,
or full editing mode.
Currently, only WOPI-enabled applications are supported, whereas in the future other
applications are foreseen to be integrated within this workflow.

3.4 On-demand data transfers
On-demand data transfer fulfils the use-case where it is not possible to extend processing

capabilities to remote sites. Instead the data, typically in the TB size range, needs to be transferred
close to where the processing capabilities are. Two modes of operation for this will be made available
within the Science Mesh: 1) transfers initiated and handled directly (point-to-point) between EFSS
services; 2) transfers initiated by EFSS service but offloaded to a secondary service (such as FTS).

The first file transfer operation mode implemented in the Science Mesh is the direct file transfer
between EFSS storage back-ends. The actual data transfer is performed through the WebDAV

Deliverable D3.1

CS3MESH4EOSC-20-006

17

implementation of the EFSS and is orchestrated by a higher-level service.

A file transfer interface in CS3APIs specifies three methods and a transfer object interface
containing the transfer ID and status. The three CS3API file transfer methods are:

• CreateTransfer – creates a transfer and returns the transfer object;

• GetTransferStatus – returns the status of a previously created transfer object;

• CancelTransfer – cancels a previously created, not yet finished, transfer object.

The transfer workflow includes a transfer initiation by the CreateTransfer method and subsequent
queries and actions based on the transfer ID: GetTransferStatus or CancelTransfer.

The next section explains more about how this will be implemented for direct file transfer using
rclone as the transfer orchestrator.

3.4.1 RClone based transfers

Rclone 16 is a command line program to manage files on cloud storage. It is mature, open source
software with an active support community. A prominent feature of rclone is its ability to orchestrate
(coordinate) WebDAV based file transfer between remotes. WebDAV protocol support is common for
any EFSS. This makes rclone our primary candidate for orchestrating direct file transfer.

Two main interfaces play a role in direct file transfer (figure 8). At the source EFSS/IOP the
CS3APIS support initiation, requesting transfer status, and cancellation of a file transfer. A file
transfer can be seen as a special share and this has to be accepted by (the user at) the destination. To
support this the current OCM specification will be extended with a special data transfer protocol type
which can be used in the OCM share request. For accepting (or optionally declining) the transfer the
OCM notification post mechanism is used. OCM notification is also used for cancellation of a running
transfer job from the receiving end.

16 https://rclone.org/

Deliverable D3.1

CS3MESH4EOSC-20-006

18

Figure 9. Direct file transfer between source and destination EFSS/IOP is supported through CS3APIS and OCM
interfaces, rclone, and WebDAV.

The IOP delegates (through the rclone API) transfers to rclone which runs as a separate service
and acts as the orchestrator (figure 8) to coordinate the actual data transfer. Rclone uses the WebDAV
implementation of the EFSS to transfer the data and in the process, keeps track of running transfer
jobs.

The IOP also keeps track of the data transfers itself independent of rclone, so users can keep track
of their transfers.

4 EFSS integration with IOP
Interoperability of EFSS services developed by different vendors is key for ScienceMesh and in

this section we describe the role of the Interoperability Platform (IOP) in facilitating this.

Deliverable D3.1

CS3MESH4EOSC-20-006

19

Figure 10. Ideal adoption of the APIs from the vendors

Figure 9 shows an ideal scenario where the vendors provide built-in support for the APIs required
by the Science Mesh. However, direct support and integration from EFSS vendors is a far-fetched goal
in a short time-scale because it requires the functionality to be re-implemented for each EFSS
platform in a consistent and coordinated way to ensure full interoperability across different vendors.
To fast-forward the integration of the necessary functionality into EFSS in a fair and consistent way
and to enable new sites joining in short time-scale, the Inter-Operability Platform (IOP) is
introduced as middleware component. IOP may be deployed easily at the sites as an additional service
and configured to be connected to the local EFSS. Once a connector between IOP and EFSS is
developed, new application workflows and ScienceMesh services may easily be built or evolved on
top of interoperable APIs.

The IOP consists of several software components packaged into a single bundle (using Kubernetes
Helm charts). The main components are:

• Reva17: an open source platform to connect EFSS, storage and application providers in a
vendor-neutral and inter-operable way. Reva implements the promoted protocols in
Science Mesh and is the reference implementation of the CS3APIs.

• WOPIServer18: an open source and vendor-neutral Web-application Open Platform
Interface (WOPI) gateway for EFSS systems, to integrate several Office Online platforms
including Microsoft Office Online and Collabora Online.

 The next figure shows the IOP deployed on two sites. The IOP exposes the interoperable protocols
and funnels them over a single API to the EFSS using the CS3APIs. This deployment model has several
advantages:

• It is feasible to implement in the given time span of the project (3 years)

• It allows to gradually transition protocols and API implementations to vendors in a
smooth and controlled manner.

17 https://reva.link/
18 https://github.com/cs3org/wopiserver

Deliverable D3.1

CS3MESH4EOSC-20-006

20

• The IOP is vendor-neutral and owned by the community, reducing the risk or having the
IOP targeting ad-hoc developments for a particular vendor.

Figure 11. Strategic deployment of IOP and vendor integration

5 Peer-to-Peer architecture integration with IOP: Cubbit
Cubbit 19 is a hybrid cloud architecture consisting of a network of P2P devices (the “Swarm”)

coordinated by a central optimization server. Differently from a centralized cloud provider
architecture, a file uploaded to Cubbit is not stored on a server but is encrypted and split up into
several shards that are distributed over the swarm. In the same way, when a file is downloaded from
Cubbit, all the shards are recollected, decrypted, and joined back together to retrieve the original
payload.

Due to a different architecture, a seamless federation between the Cubbit service and other
ScienceMesh nodes requires a specific layer that acts as a “translator” between Cubbit’s P2P
architecture and more centralized storage architectures.

An internal integration strategy was developed by Cubbit based on the API layer to assure
transparent and portable integration. The first set of endpoints was developed and deployed to allow
basic file upload and download:

• /files (POST): This endpoint allows a user to upload a file to the Cubbit network. Since
Cubbit allows for encryption and redundancy, a user can specify them as options in the
request body. If encryption is enabled, an encryption key has to be passed as a mandatory
parameter.

• /files/{file_id} (GET): This endpoint allows a user to download a file with the specified
file_id from the Cubbit network. If the uploaded file had been encrypted during the
upload, the user must give the file key as a body parameter for this request.

19 https://www.cubbit.io/

Deliverable D3.1

CS3MESH4EOSC-20-006

21

Next, the IOP connector for Cubbit was implemented using the simple endpoints described above.
The connector allows the Cubbit service to consume OCM shares from ScienceMesh node.

The connector leverages on the following CS3APIs:

• OcmCoreAPI.CreateOcmShare: this endpoint allows other partners to create a Share
with Cubbit users

• OcmAPI.ListReceivedOCMShares: this endpoint allows listing all the received shares

The implementation is based on a basic NodeJS server that is responsible for accepting the OCM
requests forwarded by the Reva gateway. These requests are then validated and processed by a
Coordinator Cubbit microservice which redirects as appropriate.

The CS3APIs repository has been integrated as a submodule of the Cubbit software stack — this
helps the interface (proto-definitions) to stay up-to-day with the CS3APIs upstream.

Figure 12. CUBBIT deployment with the IOP

6 ScienceMesh Infrastructure APIs: Monitoring

Deliverable D3.1

CS3MESH4EOSC-20-006

22

General monitoring of all Science Mesh providers is implemented with Prometheus20. Prometheus
is a royalty free, industry-proven time series database used to gather metrics efficiently from
multiple targets (i.e., the various mesh providers). It offers a plethora of features for querying the
gathered data, and many other services, and applications have direct support for Prometheus built
in; this includes Grafana21, a web service for presenting data in highly customizable dashboards. Due
to it being entirely free and its wide range of features and support by 3rd party services and
applications, Prometheus was chosen to build the foundation of the monitoring process.

The main endpoint used for monitoring is /metrics, which exposes various metrics in the
OpenMetrics 22format and is queried periodically by Prometheus. These metrics include information
about the current number of users and groups in the Science Mesh, the total storage and several
items related to HTTP I/O. Furthermore, system information is included in these metrics which can
be used to perform basic health checks (e.g., it can be checked whether a mesh provider is running
the correct version of Reva). By exposing all metrics at a single endpoint, only one query needs to be
performed by Prometheus per mesh provider, which reduces the strain on the Prometheus system
and the overall network traffic caused by the monitoring process.

6.1 Mentix
In order for Prometheus to know about the targets it should monitor, a service called Mentix

(short for Mesh Entity Exporter) is used to query the necessary information about each mesh
provider from a central database (GOCDB23) and export this to Prometheus. This service can also be
used by other services which require information about each mesh provider; it exposes the following
endpoints:

• /mentix: The main endpoint exposes information about each mesh provider, including
its name, address, services offered by the providers and more.

• /mentix/cs3: This endpoint exposes the mesh provider information in a CS3 API
compliant format.

• /mentix/loc: This endpoint exposes location information about each mesh provider
which can be consumed by Grafana.

The following diagram illustrates how Mentix interacts, as part of a central component, with all
other services and provides the necessary mesh information:

20 https://prometheus.io/
21 https://grafana.com/
22 https://openmetrics.io/
23 https://goc.egi.eu/

Deliverable D3.1

CS3MESH4EOSC-20-006

23

Figure 13. Central Component infrastructure (including Mentix)

While Mentix is not run by the individual Science Mesh nodes , it is an essential part not just in
the monitoring process: For example, the mesh directory service, which allows a user to select its
mesh provider when accepting a share invitation, also uses the Mentix endpoints to get the necessary
information about all providers in the mesh.

7 Conclusion
This document presents the initial definition of APIs and protocols for the Science Mesh federated

infrastructure as well initial implementation of several application and infrastructure workflows.

We leverage on existing standards as much as possible and introducing new interfaces only where
needed.

We expect the APIs and implementations to mature and as the next step the IOP connectors
created in collaboration with major EFSS vendors.

Figure 14. Monitoring dashboards

Deliverable D3.1

CS3MESH4EOSC-20-006

24

8 Table of figures

Figure 1. Agenda of the first OCM Workshop (https://indico.cern.ch/event/928998) 4
Figure 2. Invitation-Work flow (OCM) ... 6
Figure 3. CS3APIs documentation (sample). ... 7
Figure 4. IOP and EFSS Integration Architecture ... 10
Figure 5. Prototype of the extension running inside JupyterLab ... 11
Figure 6. An example of reading a directory from an IOP using the JupyterLab extension 12
Figure 7. The general diagram of Describo plugin components ... 15
Figure 8. Work-flow to open a document with WOPI ... 16
Figure 9. Direct file transfer between source and destination EFSS/IOP is supported through
CS3APIS and OCM interfaces, rclone, and WebDAV. ... 18
Figure 10. Ideal adoption of the APIs from the vendors ... 19
Figure 11. Strategic deployment of IOP and vendor integration .. 20
Figure 12. CUBBIT deployment with the IOP ... 21
Figure 13. Central Component infrastructure (including Mentix) ... 23
Figure 14. Monitoring dashboards ... 23

